Stabilising the performance of linear encoders in harsh environment: the biSLIDER

Alessandro Balsamo¹, Claudio Francese^{1 2}, Renato Ottone²

¹INRIM – Division of Mechanics ²Alesamonti srl – R&D

Linear encoders

- Linear encoders are widely used in machine tools and CMMs: they are cheap, reliable, yielding standard signals very suitable for closed-loop motion control
- The metrological reference is the scale, regular array of lines
 - ©In-built, no need of additional equipment
 - Eully sensitive to global or local perturbations of the array due to stresses and thermal expansion, particularly important in harsh environment

The concept

- Stabilising the scale particularly long ones is difficult if not impossible, and certainly not cheap
- Concentrate the metrological core into a single (short) stress-free low-CTE piece of equipment used as a spacer between two read-heads.

biSLIDER

<u>biS</u>ensor for <u>L</u>inearly <u>I</u>nterpolated <u>D</u>ifferential <u>E</u>rror <u>R</u>ecovery

Te biSLIDER concept

- Two read-heads separated by an invariant spacer, b
- The full stroke is scanned in legs of length b
- At each leg, the difference x_2-x_1 is recorded

Procedure

- At reference state T_0 (usually immediately after calibration to e.g. an interferometer, static compensation)
 - Scan a full stroke and record $(x_2-x_1)_i$ into a reference table
- Whenever perturbations are suspected, i.e. at perturbed state T_k
 - Scan a full stroke and record $(x_2-x_1)_i$ to form a recovery table
 - Being the bislider b invariant, any difference to the reference table is attributed to the scale; compute the difference of the recovery to the reference table
 - Integrate numerically that difference table (accumulation over previous legs) and record the resulting dynamic table
- In usual operation, use the dynamic table to perform a dynamic compensation (in addition to the static compensation, if any)

Validation plan

- Reference scan, strain imposed before recovery, compensation according to the biSLIDER concept, comparison to an independent laser interferometer
 - In laboratory at INRIM: stretch the scale by preloading
 - On a real machine tool at Alesamonti:
 - Stretch the scale by preloading
 - Release it to go back close to reference state
 - Load the machine with weight (4 t)
 - In laboratory at INRIM again: non linear strain by stressing the scale in two intermediate points

Results: INRIM, linear strain

At Alesamonti: hysteresis

Results: Alesamonti, linear strain

Results: Alesamonti, released

Results: Alesamonti, loaded (4 t)

At INRIM: how to generate non uniform strain

- Linear expansion (uniform strain) was tested already in previous experiments
- Non uniform strain to be tested
- To do so, two opposite forces were applied at intermediate points of the scale
 - Two aluminium blocks glued to the scale, slightly moved by sliding device preventing torques
 - Unfortunately one of the two glueing perturbed the scale locally unexpectedly

At INRIM: experimental set up

Results: INRIM, non uniform perturbation

Conclusions

- The biSLIDER concept has been demonstrated both in laboratory and on a real machine tool
- The compensation is effective, both globally and locally (within the limit of the bislider length, b)
- The recovery procedure is easy and fast
- Only standard and commercially available equipment is used ⇒ cheap implementation
- Most NC's provides redundant encoder channels: adding an extra read-head allows for retrofitting

Acknowledgments

The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° CP-FP 229112-2.

SOMMACT

Patent pending

